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A variable-step Numerov method for the numerical
solution of the Schrödinger equation
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Numerov’s method is one of the most widely used algorithms for solving second-
order ordinary differential equations of the form y ′′ = f (x, y). The one-dimensional
time-independent Schrödinger equation is a particular example of this type of equation.
In this article we present a variable-step Numerov method for the numerical solution of
the Schrödinger equation.
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1. Introduction

Recently the goal of providing efficient numerical methods for solving par-
ticular types of problems has been a central activity within the full scope of solv-
ing differential equations numerically.

One of such problem is the so-called special second-order differential equa-
tion, which has the form

y ′′(x) = f (x, y(x)), y(x0) = y0, y ′(x0) = y ′
0, (1)

where the right-hand side does not include the derivative of y.
These problems arise in a wide variety of physical situations and a good

sign of their importance is the fact that many of them have their own proper
name: Airy’s equation, Duffing’s equation, Hill’s equation, Mathieu’s equation,
and even the Bessel’s equation may be reduced to the form in (1).

Different authors have dealt with the problem in (1) [1–6] providing differ-
ent approaches to solving it, but the pioneer work was probably due to Störmer,
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who developed his method in connection with numerical calculations concerning
the aurora borealis.

The k-step Störmer method may be derived similarly to the Adams method,
by twice integrating the differential equation in (1), and then replacing f by the
interpolating polynomial passing through the points

(xn−(k−1), yn−(k−1)), . . . , (xn, yn),

where the xi are equally spaced.
However, to obtain more accurate formulas, it is possible used the interpo-

lation polynomial passing through the additional point (xn+1, yn+1). In this case,
we obtain the implicit Störmer method (also known in certain contexts as the
Cowell method or the Numerov method).

The methods just mentioned are of multistep-type, suitable for solving the
problem in (1) with more or less accuracy, and they have in common a fixed
stepsize. Nevertheless, to be efficient, as some authors have remarked [7,8], an
integrator based on a particular formula must be suitable for a variable stepsize
formulation.

We have obtained a generalization of the Numerov method in its variable
stepsize version [9]; this is presented in section 2. Section 3 provides a technique
for changing the steplength, and finally, in section 4 we apply the new method
for solving the Schrödinger equation numerically.

The one-dimensional time-independent or radial Schrödinger equation has
the form in (1) with f = [

l(l + 1)/x2 + V (x) − E
]
y(x), where the function

W(x) = l(l+1)/x2+V (x) denotes the effective potential, which satisfies W(x) → 0
as x → ∞; l is a given integer related to the angular momentum; V (x) is a given
function that denotes the potential, and E is a real number denoting the energy
[10]. Thus, the final equation reads

y ′′(x) =
[
l(l + 1)

x2
+ V (x) − E

]
y(x). (2)

The boundary conditions are: y(0) = 0, plus a second boundary condition, for
large values of x, which is determined by physical considerations.

Many techniques have appeared in the literature for solving this problem [6,
11–20], but the common feature among the multistep methods used is the con-
stant stepsize.

We shall test the performance of the variable two-step Numerov method by
considering the numerical integration of the Schrödinger equation in the case
where V (x) is the so-called Woods–Saxon potential (see [10, p. 298]):

V (x) = u0

1 + t
− u0 t

a(1 + t)2
, (3)

where t = exp [(x − x0)/a], u0 = −50, x0 = 7 and a = 0.6.
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2. The Numerov method of variable stepsize

The variable k-step Cowell method is an implicit multistep code of order
k + 1 that is suitable for the numerical integration of problems of the type in (1)
and can be expressed in the form (see [9])

yn+1 −
(

1 + hn+1

hn

)
yn + hn+1

hn

yn−1 = hn+1(hn+1 + hn)

k∑

j=0

γ ∗
j f [xn+1, . . . , xn+1−j ],

(4)

where hn and hn+1 are two of the stepsizes; namely,

hn = xn − xn−1, hn+1 = xn+1 − xn,

with xn−(k−1), . . . , xn+1 the grid points that are unevenly spaced, and the terms
f [xn, . . . , xn−j ] the Newton-divided differences, as are usually defined. Finally,
γ ∗

j are some coefficients that depend on the stepsizes in the grid points (in [9]
there is a detailed description on how to obtain these coefficients).

If we introduce the notations

hn+1

hn

= c1,
hn

hn−1
= c2,

hn−1

hn−2
= c3, . . . (5)

for the stepsize ratios, the above formula may be expressed as

yn+1 = (1 + c1) yn − c1yn−1 + hn+1(hn+1 + hn)

k∑

j=0

γ ∗
j f [xn+1, . . . , xn+1−j ]. (6)

For k = 2 and constant stepsize, that is c1 = 1, we obtain from (6) the
well-known Numerov formula [21,22]:

yn+1 − 2yn + yn−1 = 1
12

h2 (fn+1 + 10fn + fn−1), (7)

which is the most popular particularization of algorithm (6).
The counterpart formulation for the Numerov method in the case of vari-

able stepsize may be obtained from (6) for k = 2, and reads

yn+1 = (1 + c1) yn − c1yn−1 + 1
12

h2
n

[
(−1 + c1 + c2

1)fn+1

+(1 + 4c1 + 4c2
1 + c3

1) fn + (c1 + c2
1 − c3

1)fn−1
]
. (8)

Analogously, it is possible to extend the variable-step Numerov formula for
values of k > 2.
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3. Strategy for stepsize selection

When using a variable multistep code, one needs a strategy for deciding
how to change the steplength (and the order if this is the case). We adopt similar
strategies to those used in [23] or [24] for Adam’s multistep methods.

The reader is referred back to the considerations about stepsize selection
in [9], but now, for the implicit formula (8), we take the local error estimate as
given by

LE(xn, hn+1) = hn+1(hn+1 + hn)γ
∗
3 f [xn+1, xn, xn−1, xn−2]. (9)

Our goal is to obtain a suitable value for hn+1 so that a norm of the local
error in advancing the numerical solution from xn to xn+1 will be approximately
equal to a given tolerance. Indeed, given a requested tolerance, TOL, the optimal
projected stepsize h∗

n+1 (that is, the maximum steplength we could have taken to
produce an error estimate equal to a given tolerance) should be obtained by solv-
ing an equation of the form

ρ TOL = ∥∥LE(xn, h
∗
n+1)

∥∥, (10)

where ρ is a safety factor (<1) whose purpose is to avoid failed steps. Since we
do not know the value yn+1, in general this equation is impossible to solve.

Even if we consider the implicit method as a corrector of a predictor–
corrector pair, and we approximate the value yn+1 � y

(p)

n+1, (that is, for the value
obtained with the predictor), taking xn+1 = xn+h∗

n+1, the equation resulting from
(10) may be very complicated. Therefore, it is necessary to make some simplify-
ing assumptions.

It is natural in this situation to take one-step back, and approximate

f [xn+1, xn, xn−1, xn−2] by f [xn, xn−1, xn−2, xn−3]

in order to reduce the problem. The price to be paid for this, apart from accu-
racy, is that at the starting procedure we must calculate the values of the solution
at 3 points instead of 2. With these considerations, the stepsize estimator for the
step from xn to xn+1 is the solution of the equation

ρ TOL = ∥∥h∗
n+1(h

∗
n+1 + hn) γ ∗

3 (h∗
n+1) f [xn, xn−1, xn−2, xn−3]

∥
∥,

where γ ∗
3 (h∗

n+1) means that in the polynomial in hn+1 of degree 3 , γ ∗
3 , we have

replaced hn+1 by h∗
n+1. Calculating γ ∗

3 directly, we obtain

γ ∗
3 (hn+1) = 1

60

(
2h3

n + 3h2
n hn+1 − 3hn h2

n+1 − 2h3
n+1

)
,

and the final equation

h∗
n+1(h

∗
n+1 + hn) γ ∗

3 (h∗
n+1) = ρ TOL

‖f [xn, xn−1, xn−2, xn−3]‖
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by Descartes’ Theorem proves to have a unique positive root. This root, which
must be calculated numerically, will be our choice for the new step.

4. Numerical illustrations

In this section we present some numerical results to illustrate the perfor-
mance of the method. We consider the numerical integration of the Schrödinger
equation (2) with l = 0 for the potential in (3). In the case of negative eigenen-
ergies (that is, E ∈ [−50, 0]) we have the so-called bound-states problem, and in
case of positive eigenenergies (that is, E ∈ [1, 1000]) we have the so-called reso-
nance problem.

4.1. Bound-states problem

We have applied the variable-step Numerov method to the problem of com-
puting the eigenvalues for equation (2) in the domain [0, 10].

In fact, the problem is a Sturm–Liouville eigenvalue problem, and we are
interested in the numerical computation of the eigenvalues Ei in the energy
interval [−50, 0] for which a solution of equation (2), satisfying the boundary
conditions, exists. The boundary value problem is split up into two initial value
problems. We follow the strategy in [10], taking initial conditions y(0) = 0,
and arbitrary y ′(0) �= 0. Using a trial eigenvalue, the given differential equation is
integrated, and by means of an iterative process the corrections to the eigenvalue
are performed.

In all cases we have established ρ = 1. Given a small h, from the condi-
tions y(0) = 0, y(h) = h, we have taken the starting values computed using the
Numerov scheme of fixed stepsize h.

In table 1 we present the absolute errors for the energy values En, n =
0, 4, 9, 13, for the potential (3). The exact values for comparative purposes were
taken from [10],

E0 = −49.457788728, E9 = −22.588602258,

E4 = −41.232607772, E13 = −3.908232481.

4.2. Resonance problem

In the case of positive energies, E = k2 > 0, the potential V (x) dies away
faster than the term l(l+1)/x2, and the Schrödinger equation effectively reduces to

y ′′(x) =
[
l(l + 1)

x2
− k2

]
y(x) (11)

for x greater than some value X.
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Table 1
Bound-states problem. Data for different values of

starting step, h, and tolerance, TOL.

Eigenvalue Absolute error

h = 0.05, TOL = 10−10

E0 5.5 × 10−8

E4 2.3 × 10−6

E9 2.3 × 10−5

E13 4.1 × 10−5

h = 0.05, TOL = 10−12

E0 1.0 × 10−9

E4 1.1 × 10−7

E9 1.6 × 10−6

E13 5.8 × 10−6

h = 0.05, TOL = 10−14

E0 0
E4 6.0 × 10−9

E9 7.9 × 10−8

E13 2.1 × 10−7

h = 0.002, TOL = 10−16

E0 0
E4 0
E9 3.0 × 10−9

E13 1.7 × 10−8

The above equation has two linearly independent solutions; namely, S(x) =
kxjl(kx) and C(x) = kx nl(kx), where jl(kx), nl(kx) are the spherical Bessel and
Neumann functions respectively. Thus, the solution of equation (2) has the
asymptotic form (when x → ∞)

y(x) ∼ A k x jl(kx) − B k x nl(kx)

∼ D[sin(kx − πl/2) + tan δl cos(kx − πl/2)],

where δl is the phase shift , which may be calculated from the formula

tan δl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)

for x1 and x2 two distinct points in the asymptotic region (we take x1 as the
right-hand end point of the interval of integration, and x2 = x1 − hn, hn being
the last stepsize).

Before starting the multistep method we have to know y0 and y1. From the
initial condition, we have y0 = 0. For values of x close to the origin, the solution
behaves like y(x) � c xl+1, where c is an independent constant [13]. In view of
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Table 2
Resonance problem. Data for different values of starting step, h.

Initial step Steps Absolute error

h = 0.01 1505 1.0 × 10−2

h = 0.005 2894 7.5 × 10−4

3015 6.3 × 10−4

h = 0.001 4022 2.5 × 10−4

7778 2.0 × 10−5

13, 978 1.3 × 10−6

h = 0.0005 3530 3.9 × 10−4

8556 1.2 × 10−5

17, 053 6.6 × 10−7

28, 866 1.7 × 10−10

this, we take y1 = hl+1. The two other starting values, necessary for the stepsize
strategy, are computed using the Numerov method with fixed stepsize h. From
this point, the variable stepsize Numerov method is applied.

The resonance problem consists of finding the phase shift δ(E) = δl for a
given E ∈ [1, 1000], or finding those E ∈ [1, 1000] at which δl equals π/2.

We consider the first procedure, using the technique fully described in [25],
and compare the calculated phase shift to the analytic value of π/2, integrating
in the domain [0, 15]. The boundary conditions for this problem are

y(0) = 0, y(x) ∼ cos(
√

E x) for large x.

The results for the known highest eigenvalue E3 = 989.7019195 are presented in
table 2, where Steps refers to the total number of steps in the integration process
and Absolute error refers to the absolute error of the calculated phase shift.

5. Conclusions

We have developed a variable-stepsize Numerov method that may afford
high accuracy. As expected, for the Schrödinger equation this method needs
fewer evaluations of the potential than the classical Numerov method of fixed
stepsize.

Nevertheless, it should be noted that these methods are of general purpose;
that is, we do not know a priori the behavior of the solution. When the solution
of the initial value problem is, for example, of oscillatory or Bessel nature, par-
ticular methods such as those trigonometrically-fitted or Bessel-fitted would be
appropriate for such problems. For more details see [6,17–20].
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[23] D.R. Willé, Adv. Comput. Math. 8 (1998) 335–344.
[24] M. Calvo and J. Vigo-Aguiar, Numer. Algorithms 27 (2001) 359–366.
[25] J.M. Blatt, J. Comput. Phys. 1 (1967) 382–396.


